
Android Malware Detection using Decision Trees
and Network Traffic

Nancy, Dr. Deepak Sharma

Department of CSE, Kurukshetra Institute of Technology and Management
Kurukshetra, India

Abstract— Growing popularity of Android mobile operating
system has not only attracted user community but also the
malware developers towards this platform. Large number of
malicious apps have been detected in the past years in Google
Play Store and third party app markets. Many detection
techniques have been proposed in the literature for Android
malware detection but network traffic analysis of malwares
has not been explored as compared to other parameters like
permissions or system calls. In this paper we propose a
technique for detecting malwares based upon network traffic
of malwares. We compare network traffic of malwares with
that of normal apps and find the features which distinguish
both types of traffic. Based upon these features we build a
decision tree classifier to detect normal and malicious apps
from the testing dataset. Results show that such network
traffic analysis is highly efficient in detecting Android
malwares and accuracy of more than 90% is achieved by our
experiments.

Keywords— Android Malware, Malware Detection, Network
Traffic, Decision Trees.

I. INTRODUCTION

Android platform has beaten other mobile platforms like
iOS, Windows etc. in terms of popularity which can be
seen from the fact that more than 80% of the users have
Android smartphones [1]. Even Google Play Store has
more number of applications than Apple Play Store.
Anything that gains popularity in this computing world
soon becomes the target of malware attackers as well and
the same trend followed with Android. Android malwares
were first detected back in 2010 and since then they have
been increasing in number. These malwares exist in the
form of Android apps; as malware developers insert their
malicious component inside the legitimate apps, repackage
it and distribute it within official as well as third party app
stores. This technique is commonly known as repackaging.
Millions of malicious apps have been detected in both
official and third party app stores of Android. Apart from
repackaging, many other techniques like update attacks and
drive by downloads are also ways of propagation of
malware in Android system. These malwares pose various
threats like financial loss to users, privacy leakage from the
device, mobile devices remotely controlled as bots etc.
amongst all mobile platforms, Android is the target for
malware developers because of the reasons like: large
number of users provide motive for malware developers;
availability of app markets which provide easy distribution
of malicious apps and open kernel policy of Android which
is easy to understand from developer point of view. Hence
it is easy for malware developers to make and propagate
malicious apps for Android. According to the statistics

given in [2] “among all malwares targeting mobile devices,
the share of Android malwares is higher than 46%”.
Another recent report also alerts that “Android malwares
have grown around 400 percent since summer 2010” [3].

Of all the android malwares which have been detected
till date, some malwares are more dangerous than others
because of the fact that they not only steal private
information of the users but also send this information to
some remote server and they are remotely controlled by the
server. Given this significant growth in number of Android
malware, there is a pressing need to effectively mitigate or
defend against them. This work aims at detecting the
presence of android malwares focusing on those malwares
which are remotely controlled by some server to get the
commands or those malwares who periodically connect to
remote server to send private information of users or device
itself. Not much work has been explored in this field of
detection based upon network traffic for Android malwares.
Such type of network traffic analysis based detection
mechanism will help in building stronger solutions for
detecting android malwares and other malwares for mobile
as well as PC platforms.

The rest of the paper is organized as follows: in section
II related work in the field of Android malware detection is
discusses. Overall detection methodology which has been
used in this work is discussed in section III. Detection
results are presented in section IV. We conclude with
advantages, limitations and future work directions of this
work in section V.

II. RELATED WORK

Techniques for malware detection on Android platform
falls in two broad categories: Static Analysis and Dynamic
Analysis. In static analysis there is no execution of the
applications; only its code and other components like
manifest file are analysed. Therefore it is a quick and
inexpensive approach. Whereas in dynamic analysis the
application is executed on actual smartphone or emulator to
monitor its run time behaviour. Run time behaviour is
observed in terms of system calls and network traffic. Apps
which download malicious components at run time i.e. apps
initially do not contain any malicious code but download
malicious code at run time; these apps are hard to detect in
static analysis. So although static analysis is easier
approach but many recent malwares with such update
capability cannot be detected by static analysis and
therefore need for dynamic solutions arise. In dynamic
solutions system calls and network traffic are observed for
signs of suspicious behaviour.

Nancy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1970-1974

www.ijcsit.com 1970

[4] is a static technique which looks for risky APIs /
risky keywords within java code of the application. They
collected malware samples and created the database of
risky APIs found in malwares and further searched for
presence of such APIs in the public sector related apps like
banking, flight booking etc. [5] is other such mechanism
which does two order risk analysis of the applications
collected from the official play store. First order analysis
consists of analysing permissions within the manifest file
i.e. what dangerous permissions are present in the
application and second order analysis consists of heuristics
based filtering in which heuristics like run time download
of component by the application is considered to be
malicious. [6] found set of permissions which can
distinguish between normal apps and malicious apps. They
used hierarchical bi-clustering technique to cluster the
permissions in two groups i.e. normal and malwares. And
then filtered out those permissions sets that are clearly
distinguishable i.e. they are present in malicious apps but
missing in normal apps. [7] evaluated potential risks hidden
within the ad libraries of the applications. They extracted
the ad libraries within the application and looked for
dangerous permissions present within them. Dangerous
permissions could lead to leakage of private information of
the user. [8] is the tool available in the market for
performing static analysis.

[9] is a dynamic approach which uses thread grained
system call sequences rather than process grained system
call sequences. The authors believed that malicious
behaviour of the application is hidden within the single
thread activity nor the across multiple threads. So thread
grained system calls could give individual thread’s activity
which is easier to analyse for signs of suspicious behaviour.
[10] collected logs of system calls generated from the
applications and applied clustering to differentiate between
normal apps and the malicious ones. All this analysis of
system calls are done at remote server. [11] collected
parameters from PCB (process control block) of each
process like page frames, page numbers, virtual memory,
context switches etc. and mechanisms like fragmentation
and frequent component analysis of data and time series
logging have been used for analysis. [12] is a dynamic tool
to check whether apps have information leakage capability
or not. [13] considered network traffic as the feature for
detection. They used emulator to capture the traffic of
malwares and normal apps and rule based classifier was
used for the detection purpose. This technique also used
network traffic feature but it sued emulators for capturing
the network traffic. Our work however uses actual
smartphone to capture the traffic because of the fact that
many malwares wait for system, related events like dialling
a phone number, receiving a SMS etc. to trigger their
malicious payloads. Such system related events are not
possible in the emulator hence we have used actual
smartphones in place of emulator. Moreover we have used
decision trees to build our detection model. In the next
section we explain the methodology.

III. METHODOLOGY

The methodology has been explained in figure 1. We
start with capturing network traffic of malicious as well as
normal apps. We use actual smartphones rather than the
emulator as there are some malwares like AnserverBot or
BaseBridge which do not trigger their malicious payloads
until some system related events are complete. These
events could be receiving a SMS, dialling a phone number
or rebooting a phone etc. Since these events are not feasible
in the emulator, we use actual smartphones for capturing
smartphones. From the dataset of Android malware
samples we take one by one a malicious sample, install it
on the phone and run the tpacketcapture app to capture the
application traffic. tpacketcapture app is available freely on
the google play store which is used to capture network
traffic on the smartphones. We have total of 100 malware
samples and we capture traffic of samples one by one.
After capturing traffic of malicious samples, we also
capture traffic of normal samples so that we can distinguish
traffic between these two categories. Normal apps like
online dictionary, online gaming apps and normal web
browsing like social networking etc. are used to capture
normal traffic from smartphones. After capturing traffic
from both malicious and normal apps we start analysis of
traffic in terms of network traffic features. We select the
following network traffic features mentioned in table I
which we compare with both types of traffic. These traffic
features are selected based upon the fact that these features
have been useful in intrusion detection on desktops / PCs.
So we assume same set or some subset of features can be
used for malware detection on mobiles as well. Like
average packet size of malicious traffic on desktops is low,
so we expect this feature can result as a distinguishing
feature for mobile environment as well. List of traffic
features which have been selected for analysis is given in
table I.

TABLE I

LIST OF SELECTED TRAFFIC FEATURES
Traffic Features Traffic Features

Average Packet Size
Traffic Composition (% of
TCP, UDP)

Average No of Packets Sent
per Flow

Average No of Packets
Received per Flow

Average No of Bytes Sent per
Flow

Average No of Bytes Received
per Flow

Time interval between two
packets sent

Time interval between two
packets received

Ratio of Incoming to Outgoing
Packets

Ratio of Incoming to Outgoing
Bytes

Average No of Packets Sent
per Second

Average No of Packets
Received per Second

Average No of Bytes Sent per
Second

Average No of Bytes Received
per Second

Average Duration of the Flow
Ratio of Number of
Connections to Number of
Destination IPs

Nancy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1970-1974

www.ijcsit.com 1971

Figure 1: Overall Detection Methodology

Android malware samples have been collected from

Android Malware Genome Project []. Since our focus is on
capturing network traffic of malwares, there may be some
malwares which do not produce any network connectivity.
So we filter out the malicious samples which have network
connectivity: they may be leaking information to the server,
or may be remotely controlled by the server. So the
malicious samples which are used in our experiments are
given in table II.

TABLE II MALWARE DATASET

AnserverBot BaseBridge
Pjapps Plankton
DroidDream DroidDreamLight
BgServ RogueLemon
DroidKungfu1 DroidKungfu2
DroidKungfu3 Droidkungfu4
DroidKungfuupdate GoldDream
jSMSHider ADRD
YZHC Geinimi
GingerMaster DroidCoupon

The 16 features mentioned in table I are calculated for all
the traffic samples captured: for both malwares as well as
normal applications. Then from those features, set of
distinguishing features are found. The feature is said to be
distinguishing if it can clearly differentiate between
malicious traffic and normal traffic. For example if for a
particular feature F1, value of F1 for malicious traffic is
between 10-20 and for normal it is between 30-40 so the
ranges do not overlap and hence the feature F1 is
distinguishing. If for any other feature values for malicious
and normal samples overlap, then it is not a distinguishing
feature. So from the 16 feature set we find out the features
which are distinguishing features.

After finding out the distinguishing feature our aim is to
build a detection model; we have used Decision Trees as
the detection model. Decision trees are the supervised
learning techniques used for classification. The goal of
decision trees is to construct a model that can predict the
value of a testing application based upon the simple
decision rules inferred from the tree. There are several
advantages offered by decision trees which is the reason for
selecting this as decision classifier like: (a) constructing or

training the decision tree model is quick and easy; (b) fast
prediction based upon the nodes of the tree; (c) they can
easily handle irrelevant attributes; (d) robust against
skewed distributions etc. In the next section we discuss the
results achieved: what are the values of the traffic features;
what are the distinguishing features and what is the
accuracy of decision tree model.

IV. RESULTS AND DISCUSSION

The values of 16 traffic features obtained are given in
table III. Set of features which are distinguishable are
highlighted in bold and italics. Average packet size is small
for malicious mobile traffic than normal mobile traffic.
Reason could be the fact that header packets in malicious
traffic carries less data in malwares and header packets
contain more data in normal samples. Average number of
packets sent and received per flow are also distinguishing
as in most of the cases malicious samples sent packets
periodically ; e.g. malwares receive commands periodically
or leak information after a fix particular interval of time. So
lesser amount of packets are sent and received in case of
malicious samples. Similar is the case with amount of bytes,
lesser the number of packets transferred; lesser is the
amount of bytes transferred. Hence amount of bytes sent
and received per flow are also distinguishing features.
Traffic composition on the other hand is similar in both the
cases. Ratio of incoming to outgoing bytes is another
distinguishing feature whereas an interesting thing is that
ratio of incoming to outgoing packets is not distinguishing.
Ratio of connections to number of destination IPs is
another feature which is distinguishing. This is because of
the fact that number of destination IPs in case of malwares
is generally one or two i.e. fixed number of destination IPs
and they make frequent connections to those fixed number
of destination IPs. On the other hand in case of normal
traffic, number of destinations are generally quite large as
the user may be accessing quite a number of websites
together and number of connections may not be that
frequent to each destination. Hence this ratio is more for
malicious traffic and lesser for normal traffic; hence it is
distinguishing. Values of all other features are mentioned in
the table III. Total of 8 distinguishing features are found at
the end of this step. After finding out these distinguishing

Nancy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1970-1974

www.ijcsit.com 1972

features, our next step is to construct the decision tree
based upon these distinct features only. We capture a
separate set of testing apps which is a combination of
malwares and normal apps. Again we capture traffic for
each of the sample in the testing dataset. And we evaluate
those 8 features again for every sample captured.

TABLE III

VALUES OF FEATURES FOR MALWARE AND NORMAL
TRAFFIC

Traffic Feature
Malware
Traffic

Normal
Traffic

Average Packet Size 90-40 600-700
Traffic Composition (% of
TCP, UDP)

More than
90% TCP

More than 90%
TCP

Average No of Packets
Sent per Flow 10-12 20-30

Average No of Packets
Received per Flow 10-20 30-50

Average No of Bytes Sent
per Flow 500-2000 3000-6000

Average No of Bytes
Received per Flow 500-10000 40000-60000

Time interval between two
packets sent 0.3-100 0.5-1

Time interval between two
packets received 0.1-80 0.5-1.5

Ratio of Incoming to
Outgoing Packets 0.4-2 0.9-1.5

Ratio of Incoming to
Outgoing Bytes 0.5-5 7-8

Average No of Packets Sent
per Second 0.5-40 10-20

Average No of Packets
Received per Second 0.5-45 10-25

Average No of Bytes Sent
per Second 10-1000 17-2000

Average No of Bytes
Received per Second 15-2000 4000-5000

Average Duration of the
Flow 1-400 5-15

Ratio of Number of
Connections to Number of
Destination IPs

30-50 5-9

Since decision tree is built on only 8 distinguishing features,
so we need not calculate all the 16 features again for the
testing samples, we need to find out the values of 8 features
only for all the applications whose decision needs to be
made in the testing database. We capture 167 malicious
traffic samples for testing and 50 normal samples for
detection. Detection results are given in the table IV.
Number in the bracket shows the number of samples for
that malware family.
For example AnserverBot (10) shows we captured 10
samples of AnserverBot malware and all 10 were detected
as malwares hence giving accuracy of detecting this
malware as 100%. So we can see which malware family is
getting detected by what accuracy. Malwares like
AnserverBot, Plankton, RogueLemon, DroidKungFu1,
DroidKungFuupdate, GoldDream and DroidCoupon
achieve higherst accuracy of 100% as all of their samples
get detected as malwares. On the other hand malwares like

DroidDream, DroidDreamLight and GingerMaster achive
low accuracy in malware detection. Few of their samples
get detected as normal. Whereas out of 50 normal traffic
samples, 49 get detected corrected as normal giving high
accuracy of 98%. The reason that few malwares were
wrongly detected as normal could be the fact that these
malwares might be using encryption techniques for
obfuscation. Malwares try to evade detection by such
techniques like encrypting their malicious payloads and
look like normal traffic. So our technique achieves overall
accuracy of more than 90% as total of 196 samples are
correctly classified (147 correctly malware and 49 correctly
normal) out of total of 217 samples. So we can conclude
that our technique gives good results and it only fails in the
cases when malwares use encryption for their network
traffic activity.

V. CONCLUSION

In this paper we have used network traffic as the dynamic
feature for Android malware detection. Network traffic has
been used in previous works as well but rather than using
emulators, we have used actual smartphones for capturing
network traffic for malwares. Set of features which can
distinguish between normal and malicious traffic are
determined. Decision tree classifier is built on top of these
distinguishing features only and set of 217 samples are
given as input to the classifier. The model predicts more
than 90% of the traffic samples correctly. It provides high
accuracy and fails only in cases where there is some
obfuscation techniques like encrypting the traffic used by
malwares. In the future work we will focus on the deep
packet analysis for detecting these obfuscated malwares as
alone network traffic features cannot detect them.

TABLE IV
DETECTION RESULTS

Sample
Detected
Malware

Detected
Normal

Accuracy

AnserverBot (10) 10 0 100%
BaseBridge (10) 9 1 90%
Pjapps (10) 8 2 80%
Plankton (10) 10 0 100%
DroidDream (10) 7 3 70%
DroidDreamLight (10) 5 5 50%
BgServ (9) 8 1 88%
RogueLemon (2) 2 0 100%
DroidKungFu1 (10) 10 0 100%
DroidKungFu2 (10) 9 1 90%
DroidKungFu3 (10) 8 2 80%
DroidKungFu4 (10) 8 2 80%
DroidKungFuupdate
(1)

1 0 100%

GoldDream (10) 10 0 100%
jSMSHider (10) 9 1 90%
ADRD (10) 8 2 80%
YZHC (10) 9 1 90%
Geinimi (10) 9 1 90%
GingerMaster (4) 4 3 75%
DroidCoupon (1) 1 0 100%
NORMAL (50) 1 49 98%
Overall Accuracy 90.32%

Nancy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1970-1974

www.ijcsit.com 1973

REFERENCES
[1] IDC, “Smartphone OS Market Share, 2015 Q2”, [Online].

Available. http://www.idc.com/prodserv/smartphone-os-market-
share.jsp

[2] Number of the Week: at Least 34% of Android Malware Is Stealing
Your Data., [Online].Available
http://www.kaspersky.com/about/news/ virus/2011/Number_of_the
Week at Least 34 of Android Malware Is Stealing Your Data

[3] Malicious Mobile Threats Report 2010/2011.
http://www.juniper.net/us/en/company/press-center/press-
releases/2011/pr 2011 05 10-09 00.html.

[4] S.H. Seo, A. Gupta, A.M. Sallam, E. Bertino, K. Yim,, “Detecting
mobile malware threats to homeland security through static
analysis,”, Journal of Network and Computer Applications, vol. 38,
pp.43-53.

[5] M. Grace, Y. Zhou, Q. Zhang, S. Zou, X. Jiang, “RiskRanker:
Scalable and Accurate Zero-day Android Malware Detection”, In
10th International Conference on Mobile Systems, Applications and
Services, June 2012 (2002) The IEEE website. [Online]. Available:
http://www.ieee.org/

[6] V. Moonsamy, J. Rong, S. Liu “Mining permission patterns for
contrasting clean and malicious android applications” Future
Generation Computer Systems, vol. 36, September 2013, pp.122-
132.

[7] M. Grace, W. Zhou, X. Jiang A. Sadheghi “Unsafe Exposure
Analysis of Mobile In-App Advertisement”, In Proceedings of the

5th ACM Conference on Security and Privacy in Wireless and
Mobile Networks (2012), ACM WiSec 2012.

[8] . BlackHat, Reverse Engineering with Androguard, [Online].
Available:
 https://code.google.com/androguard

[9] Y. Lin, Y. Lai, C. Chen, H. Tsai, “Identifying android malicious
repackaged applications by thread-grained system call sequences”,
Computers & Security, vol. 39, pp.340-350.

[10] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. “Crowdroid:
Behavior-Based Malware Detection System for Android”. In
Proceedings of the 1st Workshop on Security and Privacy in
Smartphones and Mobile Devices CCS-SPSM’11, 2011.

[11] Shahzad, F., Akbar, M., Khan, S., Farooq, M.: Tstructdroid:
Realtime malware detection using in-execution dynamic analysis of
kernel process control blocks on android. Technical
Report.National University of Computer & Emerging Sciences,
Islamabad, Pakistan, (2013)

[12] William E, Peter G, Byunggon C, Landon C: “TaintDroid: An
information flow tracking system for realtime privacy monitoring
on smartphones” in Proceedings of 9th USENIX Symposium on
Operating Systems Design and Implementation.

[13] A. Arora, S.Garg, S.K. Peddoju, “Malware Detection using
Network Traffic Analysis in Android based Mobile devices”, In 8th
International Conference on NGMAST, Oxford UK, 2014.

Nancy et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016, 1970-1974

www.ijcsit.com 1974

