
Android Malware Detection using Decision Trees 
and Network Traffic 

Nancy, Dr. Deepak Sharma 

Department of CSE, Kurukshetra Institute of Technology and Management 
Kurukshetra, India 

Abstract— Growing popularity of Android mobile operating 
system has not only attracted user community but also the 
malware developers towards this platform. Large number of 
malicious apps have been detected in the past years in Google 
Play Store and third party app markets. Many detection 
techniques have been proposed in the literature for Android 
malware detection but network traffic analysis of malwares 
has not been explored as compared to other parameters like 
permissions or system calls. In this paper we propose a 
technique for detecting malwares based upon network traffic 
of malwares. We compare network traffic of malwares with 
that of normal apps and find the features which distinguish 
both types of traffic. Based upon these features we build a 
decision tree classifier to detect normal and malicious apps 
from the testing dataset. Results show that such network 
traffic analysis is highly efficient in detecting Android 
malwares and accuracy of more than 90% is achieved by our 
experiments. 

Keywords— Android Malware, Malware Detection, Network 
Traffic, Decision Trees. 

I. INTRODUCTION 

Android platform has beaten other mobile platforms like 
iOS, Windows etc. in terms of popularity which can be 
seen from the fact that more than 80% of the users have 
Android smartphones [1]. Even Google Play Store has 
more number of applications than Apple Play Store. 
Anything that gains popularity in this computing world 
soon becomes the target of malware attackers as well and 
the same trend followed with Android. Android malwares 
were first detected back in 2010 and since then they have 
been increasing in number. These malwares exist in the 
form of Android apps; as malware developers insert their 
malicious component inside the legitimate apps, repackage 
it and distribute it within official as well as third party app 
stores. This technique is commonly known as repackaging. 
Millions of malicious apps have been detected in both 
official and third party app stores of Android. Apart from 
repackaging, many other techniques like update attacks and 
drive by downloads are also ways of propagation of 
malware in Android system. These malwares pose various 
threats like financial loss to users, privacy leakage from the 
device, mobile devices remotely controlled as bots etc. 
amongst all mobile platforms, Android is the target for 
malware developers because of the reasons like: large 
number of users provide motive for malware developers; 
availability of app markets which provide easy distribution 
of malicious apps and open kernel policy of Android which 
is easy to understand from developer point of view. Hence 
it is easy for malware developers to make and propagate 
malicious apps for Android.  According to the statistics 

given in [2] “among all malwares targeting mobile devices, 
the share of Android malwares is higher than 46%”. 
Another recent report also alerts that “Android malwares 
have grown around 400 percent since summer 2010” [3]. 

Of all the android malwares which have been detected 
till date, some malwares are more dangerous than others 
because of the fact that they not only steal private 
information of the users but also send this information to 
some remote server and they are remotely controlled by the 
server. Given this significant growth in number of Android 
malware, there is a pressing need to effectively mitigate or 
defend against them. This work aims at detecting the 
presence of android malwares focusing on those malwares 
which are remotely controlled by some server to get the 
commands or those malwares who periodically connect to 
remote server to send private information of users or device 
itself. Not much work has been explored in this field of 
detection based upon network traffic for Android malwares. 
Such type of network traffic analysis based detection 
mechanism will help in building stronger solutions for 
detecting android malwares and other malwares for mobile 
as well as PC platforms. 

The rest of the paper is organized as follows: in section 
II related work in the field of Android malware detection is 
discusses. Overall detection methodology which has been 
used in this work is discussed in section III. Detection 
results are presented in section IV. We conclude with 
advantages, limitations and future work directions of this 
work in section V. 

II. RELATED WORK

Techniques for malware detection on Android platform 
falls in two broad categories: Static Analysis and Dynamic 
Analysis. In static analysis there is no execution of the 
applications; only its code and other components like 
manifest file are analysed. Therefore it is a quick and 
inexpensive approach. Whereas in dynamic analysis the 
application is executed on actual smartphone or emulator to 
monitor its run time behaviour. Run time behaviour is 
observed in terms of system calls and network traffic. Apps 
which download malicious components at run time i.e. apps 
initially do not contain any malicious code but download 
malicious code at run time; these apps are hard to detect in 
static analysis. So although static analysis is easier 
approach but many recent malwares with such update 
capability cannot be detected by static analysis and 
therefore need for dynamic solutions arise. In dynamic 
solutions system calls and network traffic are observed for 
signs of suspicious behaviour.  
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[4] is a static technique which looks for risky APIs / 
risky keywords within java code of the application. They 
collected malware samples and created the database of 
risky APIs found in malwares and further searched for 
presence of such APIs in the public sector related apps like 
banking, flight booking etc. [5] is other such mechanism 
which does two order risk analysis of the applications 
collected from the official play store. First order analysis 
consists of analysing permissions within the manifest file 
i.e. what dangerous permissions are present in the 
application and second order analysis consists of heuristics 
based filtering in which heuristics like run time download 
of component by the application is considered to be 
malicious.  [6] found set of permissions which can 
distinguish between normal apps and malicious apps. They 
used hierarchical bi-clustering technique to cluster the 
permissions in two groups i.e. normal and malwares. And 
then filtered out those permissions sets that are clearly 
distinguishable i.e. they are present in malicious apps but 
missing in normal apps. [7] evaluated potential risks hidden 
within the ad libraries of the applications. They extracted 
the ad libraries within the application and looked for 
dangerous permissions present within them. Dangerous 
permissions could lead to leakage of private information of 
the user. [8] is the tool available in the market for 
performing static analysis. 

[9] is a dynamic approach which uses thread grained 
system call sequences rather than process grained system 
call sequences. The authors believed that malicious 
behaviour of the application is hidden within the single 
thread activity nor the across multiple threads. So thread 
grained system calls could give individual thread’s activity 
which is easier to analyse for signs of suspicious behaviour.  
[10] collected logs of system calls generated from the 
applications and applied clustering to differentiate between 
normal apps and the malicious ones. All this analysis of 
system calls are done at remote server.  [11] collected 
parameters from PCB (process control block) of each 
process like page frames, page numbers, virtual memory, 
context switches etc. and mechanisms like fragmentation 
and frequent component analysis of data and time series 
logging have been used for analysis. [12] is a dynamic tool 
to check whether apps have information leakage capability 
or not. [13] considered network traffic as the feature for 
detection. They used emulator to capture the traffic of 
malwares and normal apps and rule based classifier was 
used for the detection purpose. This technique also used 
network traffic feature but it sued emulators for capturing 
the network traffic. Our work however uses actual 
smartphone to capture the traffic because of the fact that 
many malwares wait for system, related events like dialling 
a phone number, receiving a SMS etc. to trigger their 
malicious payloads. Such system related events are not 
possible in the emulator hence we have used actual 
smartphones in place of emulator. Moreover we have used 
decision trees to build our detection model. In the next 
section we explain the methodology. 

 

III. METHODOLOGY 

The methodology has been explained in figure 1. We 
start with capturing network traffic of malicious as well as 
normal apps. We use actual smartphones rather than the 
emulator as there are some malwares like AnserverBot or 
BaseBridge which do not trigger their malicious payloads 
until some system related events are complete. These 
events could be receiving a SMS, dialling a phone number 
or rebooting a phone etc. Since these events are not feasible 
in the emulator, we use actual smartphones for capturing 
smartphones. From the dataset of Android malware 
samples we take one by one a malicious sample, install it 
on the phone and run the tpacketcapture app to capture the 
application traffic. tpacketcapture app is available freely on 
the google play store which is used to capture network 
traffic on the smartphones. We have total of 100 malware 
samples and we capture traffic of samples one by one. 
After capturing traffic of malicious samples, we also 
capture traffic of normal samples so that we can distinguish 
traffic between these two categories. Normal apps like 
online dictionary, online gaming apps and normal web 
browsing like social networking etc. are used to capture 
normal traffic from smartphones. After capturing traffic 
from both malicious and normal apps we start analysis of 
traffic in terms of network traffic features. We select the 
following network traffic features mentioned in table I 
which we compare with both types of traffic. These traffic 
features are selected based upon the fact that these features 
have been useful in intrusion detection on desktops / PCs. 
So we assume same set or some subset of features can be 
used for malware detection on mobiles as well. Like 
average packet size of malicious traffic on desktops is low, 
so we expect this feature can result as a distinguishing 
feature for mobile environment as well.  List of traffic 
features which have been selected for analysis is given in 
table I. 

 
TABLE I 

LIST OF SELECTED TRAFFIC FEATURES 
Traffic Features Traffic Features 

Average Packet Size 
Traffic Composition (% of 
TCP, UDP) 

Average No of Packets Sent 
per Flow 

Average No of Packets 
Received per Flow 

Average No of Bytes Sent per 
Flow 

Average No of Bytes Received  
per Flow 

Time interval between two 
packets sent 

Time interval between two 
packets received 

Ratio of Incoming to Outgoing 
Packets 

Ratio of Incoming to Outgoing 
Bytes 

Average No of Packets Sent 
per Second 

Average No of Packets 
Received per Second 

Average No of Bytes Sent per 
Second 

Average No of Bytes Received  
per Second 

Average Duration of the Flow 
Ratio of Number of 
Connections to Number of 
Destination IPs 
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Figure 1: Overall Detection Methodology 

 
Android malware samples have been collected from 

Android Malware Genome Project []. Since our focus is on 
capturing network traffic of malwares, there may be some 
malwares which do not produce any network connectivity. 
So we filter out the malicious samples which have network 
connectivity: they may be leaking information to the server, 
or may be remotely controlled by the server. So the 
malicious samples which are used in our experiments are 
given in table II. 

 
TABLE II  MALWARE DATASET 

AnserverBot BaseBridge 
Pjapps Plankton 
DroidDream DroidDreamLight 
BgServ RogueLemon 
DroidKungfu1 DroidKungfu2 
DroidKungfu3 Droidkungfu4 
DroidKungfuupdate GoldDream 
jSMSHider ADRD 
YZHC Geinimi 
GingerMaster DroidCoupon 

The 16 features mentioned in table I are calculated for all 
the traffic samples captured: for both malwares as well as 
normal applications. Then from those features, set of 
distinguishing features are found. The feature is said to be 
distinguishing if it can clearly differentiate between 
malicious traffic and normal traffic. For example if for a 
particular feature F1, value of F1 for malicious traffic is 
between 10-20 and for normal it is between 30-40 so the 
ranges do not overlap and hence the feature F1 is 
distinguishing. If for any other feature values for malicious 
and normal samples overlap, then it is not a distinguishing 
feature. So from the 16 feature set we find out the features 
which are distinguishing features. 

After finding out the distinguishing feature our aim is to 
build a detection model; we have used Decision Trees as 
the detection model. Decision trees are the supervised 
learning techniques used for classification. The goal of 
decision trees is to construct a model that can predict the 
value of a testing application based upon the simple 
decision rules inferred from the tree. There are several 
advantages offered by decision trees which is the reason for 
selecting this as decision classifier like: (a) constructing or 

training the decision tree model is quick and easy; (b) fast 
prediction based upon the nodes of the tree; (c) they can 
easily handle irrelevant attributes; (d) robust against 
skewed distributions etc. In the next section we discuss the 
results achieved: what are the values of the traffic features; 
what are the distinguishing features and what is the 
accuracy of decision tree model. 

IV. RESULTS AND DISCUSSION 

The values of 16 traffic features obtained are given in 
table III. Set of features which are distinguishable are 
highlighted in bold and italics. Average packet size is small 
for malicious mobile traffic than normal mobile traffic. 
Reason could be the fact that header packets in malicious 
traffic carries less data in malwares and header packets 
contain more data in normal samples. Average number of 
packets sent and received per flow are also distinguishing 
as in most of the cases malicious samples sent packets 
periodically ; e.g. malwares receive commands periodically 
or leak information after a fix particular interval of time. So 
lesser amount of packets are sent and received in case of 
malicious samples. Similar is the case with amount of bytes, 
lesser the number of packets transferred; lesser is the 
amount of bytes transferred. Hence amount of bytes sent 
and received per flow are also distinguishing features. 
Traffic composition on the other hand is similar in both the 
cases. Ratio of incoming to outgoing bytes is another 
distinguishing feature whereas an interesting thing is that 
ratio of incoming to outgoing packets is not distinguishing. 
Ratio of connections to number of destination IPs is 
another feature which is distinguishing. This is because of 
the fact that number of destination IPs in case of malwares 
is generally one or two i.e. fixed number of destination IPs 
and they make frequent connections to those fixed number 
of destination IPs. On the other hand in case of normal 
traffic, number of destinations are generally quite large as 
the user may be accessing quite a number of websites 
together and number of connections may not be that 
frequent to each destination. Hence this ratio is more for 
malicious traffic and lesser for normal traffic; hence it is 
distinguishing. Values of all other features are mentioned in 
the table III. Total of 8 distinguishing features are found at 
the end of this step. After finding out these distinguishing 
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features, our next step is to construct the decision tree 
based upon these distinct features only. We capture a 
separate set of testing apps which is a combination of 
malwares and normal apps. Again we capture traffic for 
each of the sample in the testing dataset. And we evaluate 
those 8 features again for every sample captured. 

 
TABLE III 

VALUES OF FEATURES FOR MALWARE AND NORMAL 
TRAFFIC 

Traffic Feature 
Malware 
Traffic 

Normal 
Traffic 

Average Packet Size 90-40 600-700 
Traffic Composition (% of 
TCP, UDP) 

More than 
90% TCP 

More than 90% 
TCP 

Average No of Packets 
Sent per Flow 10-12 20-30 

Average No of Packets 
Received per Flow 10-20 30-50 

Average No of Bytes Sent 
per Flow 500-2000 3000-6000 

Average No of Bytes 
Received per Flow 500-10000 40000-60000 

Time interval between two 
packets sent 0.3-100 0.5-1 

Time interval between two 
packets received 0.1-80 0.5-1.5 

Ratio of Incoming to 
Outgoing Packets 0.4-2 0.9-1.5 

Ratio of Incoming to 
Outgoing Bytes 0.5-5 7-8 

Average No of Packets Sent 
per Second 0.5-40 10-20 

Average No of Packets 
Received per Second 0.5-45 10-25 

Average No of Bytes Sent 
per Second 10-1000 17-2000 

Average No of Bytes 
Received per Second 15-2000 4000-5000 

Average Duration of the 
Flow 1-400 5-15 

Ratio of Number of 
Connections to Number of 
Destination IPs 

30-50 5-9 

 
Since decision tree is built on only 8 distinguishing features, 
so we need not calculate all the 16 features again for the 
testing samples, we need to find out the values of 8 features 
only for all the applications whose decision needs to be 
made in the testing database. We capture 167 malicious 
traffic samples for testing and 50 normal samples for 
detection. Detection results are given in the table IV. 
Number in the bracket shows the number of samples for 
that malware family. 
For example AnserverBot (10) shows we captured 10 
samples of AnserverBot malware and all 10 were detected 
as malwares hence giving accuracy of detecting this 
malware as 100%. So we can see which malware family is 
getting detected by what accuracy. Malwares like 
AnserverBot, Plankton, RogueLemon, DroidKungFu1, 
DroidKungFuupdate, GoldDream and DroidCoupon 
achieve higherst accuracy of 100% as all of their samples 
get detected as malwares. On the other hand malwares like 

DroidDream, DroidDreamLight and GingerMaster achive 
low accuracy in malware detection. Few of their samples 
get detected as normal. Whereas out of 50 normal traffic 
samples, 49 get detected corrected as normal giving high 
accuracy of 98%. The reason that few malwares were 
wrongly detected as normal could be the fact that these 
malwares might be using encryption techniques for 
obfuscation.  Malwares try to evade detection by such 
techniques like encrypting their malicious payloads and 
look like normal traffic. So our technique achieves overall 
accuracy of more than 90% as total of 196 samples are 
correctly classified (147 correctly malware and 49 correctly 
normal) out of total of 217 samples. So we can conclude 
that our technique gives good results and it only fails in the 
cases when malwares use encryption for their network 
traffic activity. 
 

V. CONCLUSION 

In this paper we have used network traffic as the dynamic 
feature for Android malware detection. Network traffic has 
been used in previous works as well but rather than using 
emulators, we have used actual smartphones for capturing 
network traffic for malwares. Set of features which can 
distinguish between normal and malicious traffic are 
determined. Decision tree classifier is built on top of these 
distinguishing features only and set of 217 samples are 
given as input to the classifier. The model predicts more 
than 90% of the traffic samples correctly. It provides high 
accuracy and fails only in cases where there is some 
obfuscation techniques like encrypting the traffic used by 
malwares. In the future work we will focus on the deep 
packet analysis for detecting these obfuscated malwares as 
alone network traffic features cannot detect them. 
 

TABLE IV 
DETECTION RESULTS 

Sample 
Detected 
Malware 

Detected 
Normal 

Accuracy 

AnserverBot (10) 10 0 100% 
BaseBridge (10) 9 1 90% 
Pjapps  (10) 8 2 80% 
Plankton (10) 10 0 100% 
DroidDream (10) 7 3 70% 
DroidDreamLight (10) 5 5 50% 
BgServ (9) 8 1 88% 
RogueLemon (2) 2 0 100% 
DroidKungFu1 (10) 10 0 100% 
DroidKungFu2 (10) 9 1 90% 
DroidKungFu3 (10) 8 2 80% 
DroidKungFu4 (10) 8 2 80% 
DroidKungFuupdate 
(1) 

1 0 100% 

GoldDream (10) 10 0 100% 
jSMSHider  (10) 9 1 90% 
ADRD (10) 8 2 80% 
YZHC (10) 9 1 90% 
Geinimi (10) 9 1 90% 
GingerMaster (4) 4 3 75% 
DroidCoupon (1) 1 0 100% 
NORMAL (50) 1 49 98% 
Overall Accuracy   90.32% 
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